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INTRODUCTION

In these lectures I have aimed at giving an elementary introduction to cer-

tain types of stochastic differential equations in infinite dimensional spaces.

The material is relatively self contained and should be easily accessible to

graduate students. I have freely drawn on some of the existing work in the

field, especially the pioneering work of K. It6 as well as some extensions

appearing in the papers of I. Mitoma, R. Wolpert and myself, the thesis of S.K.

Christensen as well as some recent work which I have been doing jointly with V.

Perez-Abreu.

My warm thanks are due to Professor Victor Perez-Abreu for writing up these

notes.

G. Kallianpur

March 25, 1986
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LECTURE I

COUNTABLY HILBERTIAN NUCLEAR SPACES

In this lecture we~introduce-,Countably Hilbertian Nuclear (CHN) spaces and

give some examples to illustrate why these infinite dimensional spaces are con-

venient for the study of some practical problems, e.g. those occuring in

stochastic evolutions.

Let 0 be a (real) linear space whose topology T is given by an

increasing sequence ii1r r e N of Hilbertian norms. Let Or be the Hilbert

space completion of 0 w.r.t. i.Ir and assume that

r=1

Then (t,T) is a Frechet space with metric

7 1 1 - V~n

n=1 2n 1 + I@- *In

and (D,p) is called a Countably Hilbertian Space. Since for n 4 m

10nn 101m 0 E I

then

(Pm I n m > n.

A countably Hilbertian space € is called nuclear if for each n ) 0

there exists m > n such that the canonical injection i: I m--0n is

Hilbert-Schmidt i.e. if {OjlJI is a complete orthonormal system (CONS) in

It then we have

jsl J n
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Let On be the dual (Hilbert) space of o and for f e 0' let
n n

-n : sup IflEll
-I 1n 4i

V since for n < m IU n C lo 1 m then

V C (' n < m.

n - m

Let 0' be the topological dual space of 0 with the strong topology, which

is given by the complete system of neighborhoods of zero given by sets of the

form, {f e o': ifeB < e}, e>0, where,

Oft g = sup(If[,]l: 0 e B1 B a bounded set in o.

Then

.-. :- 0' : U. 0'.
n=1 n

It is important to note that this topology cannot be given by a countable family

of seminorms.

Suppose there is an inner product <",>H on 4 which is continuous in

the T-topology of 0. Let H be the Hilbert space completion of 0 w.r.t.

<"'> H" Then the triplet

o 4 H C* 0'

is called a rigged Hilbert space or a Gelfand triplet. The Hilbert space H

may be one of the Hilbert spaces or defining the topology of 0 but this is

not always the case as we shall illustrate later on.

Example 1.1 Let (R) be the space of rapidly decreasing functions on R.

The usual definition of A(R) is the following:
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Z(R) i ff * e C' and sup jxa0(6)(x)j < a i,$ EN

x R

and the topology of , (R) (Frichet) is given by the family of seminorms

{I*, = sup Ix o(' (x)la,s e N}.

x eR

The space (R) can also be defined using the following sequence of

Hilbertian norms: Let

JLL 2~x / 2 d n x/Hn(x) n! e ( )n e

and

2 /
g(x) = i e-2/2.

Then the sequence of Hermite functions {nn)l

-n+(X) = Vg(x) (n!) /1 1 2 Hn(x) n 0 (1.1)

" is a CONS in L 2(R). Then ([5])

, (R) = { £ e L2(R): 1012 < Vp e R)
p

Let P be the completion of (R) w.r.t. then = L2(R)

- p C#q p q

and

-;:: ,2b (R)' n
p

p

The Schwarz topology on is the topology determined by ({-OpIp e RI or

equivalent by the countable family (.1: p P N}.

'3
0 4 7 .,,, , -t,: -"' 'f . ..,. .; ,',r '. '' ., , v,., ' ., ', ' ., ' ... -- .;.,w i ' , .i ' '". "' ,.. '' 1
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Let f,g c , then for all p e R

If[g] : <f,@n>0 <g,*n>0
12

n

<f o ( -p( g >( 1 )2p) 1 1 gm
n -P p

which shows that £ is the dual of p and therefore

A'U -P.
p >O

Finally since for any p e R {(n + _)PO is a CONS for then if
1p

p > q +

1. (n + 2 )-Po q n (n + )-2(p-q) <

n=1 2

i.e. the canonical injection 9 is Hilbert-Schmidt for p > q + 1
Q 2

Hence o (R) is a CHNS and if H = L2 (R)

is a rigged Hilbert space. /3(R)' is the familiar space of tempered

distributions.

The following observation will be useful later (see Remark 1.2): If L is

the operator on H = L2(R) defined by

-L d2 2

-; -dx 2

thenLo 0 were X n and for r >7

-r j, (1 + j2r1 )-2r<X) "2r = (j ) < a. (1.2)j=1 3H j= 1  j=1

, " '. . . . . . . . . - , - -h. ., - - ' .- - .+;- ' .- ' "J" " °" " -' - ." - -" - ; - '" Z
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In these lectures we consider the following model for deterministic

evolution:

Model. Suppose we have a rigged Hilbert space *4>H C-O ' on which is defined

" a continuous linear operator A: 0 - and a strongly continuous semigroup

(Tt)t0 0  on H such that the following conditions hold:

-. a) Tt0C V t 0.

b) The restriction TtI : € € is T-continuous Y t > 0.

c) t - Tto is continuous V * e 0.

d) The generator of Tt on H coincide with A on €.

V.-

If ¢,H,' are already given, (a)-(d) is a restriction on the type of Tt  that

can oe considered. However, it is important to observe that in practical

problems, physical considerations give no idea of the rigged Hilbert space

SD <H 4 ' and only the Hilbert space H and the semigroup Tt are naturally

given in the problem, and hence the Schwarz space cannot be chosen in advance.

The following example gives a method of choosing 0 and 0' wnen Tt  is

given and satisfies certain conditions. Then we will introduce some examples

where we can set up an infinite dimensional stochastic differential equation by

choosing D and ' suitably so as to satisfy the above conditions.

Given a rigged Hilbert space D H C40', a semigroup (Tt)t)O satisfying

the above conditions will be called compatible with (0,H,') or equivalently

we will refer to (4,H,Tt) as a compatible family.

EXAMPLE 1.2 (A class of examples of (t,H,O',Tt). Let H be a real separable

Hilbert space and A -L be a closed densely defined self adjoint operator on

H s.t. <-L ,4 >H < 0 for E e Dom(L). Let Tt  be the semigroup on H deter-

mined by A. Further assume that some power of the resolvent of L is a

%0W4e
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Hilbert-Schmidt operator i.e.

3 rI s.t (AI + L) is Hilbert-Schmidt (1.3)

This condition helps to find an appropriate CHNS 0 for the model, as we
shall now indicate: it implies that there is a CONS {Oj};I in H s.t.

-- ]I jo

and 0 < X 2 ... . Take X =1 and define

{o e H: I(< + L)rV Vr e RI

a = { : (1 + j) 2r <,,.> 2 < r(
c H: *~j Hr (140 - j = 1

Define the inner product <*'*>r on 0 by

< (1 + x) 2 r <,, Oj>H< ,j>H (1.5)

and

Rol 2 <o,0>r r

-
.
. Let 0r be the 1'1r - completion of 0. We then have

' "~ O r rs= fl, =U ,

rr r

and for r < s, l1o1 r C. lot s  and so 4s - Or with 0o = H. Condition (1.3)

implies that the canonical injection $p C4 0r is Hilbert Schmidt for

p > r + r and therefore 0 is a CHNS.

For each r > 0 1-r and 0r are in duality under the pairing

n[0] := ) <n, j>. <Ooj> n e O-r' o E Or (1.6)
j=1

4.4o
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and therefore o D,. We also have that ( jj., is a compl ete orthogonal

system (not normal) in o r for all r e R.

From now on we will write <,->o =~ <60 H and

7 (1 + y 2 ) <C (1.7)

Now we Shall prove that the semigroup T t satisfies conditions (a)-(d) for

our above model for deterministic evolution:

Condition (1.3) implies that - L generates a contraction semigroup T t on

H. For $and t .,0 we have

Tt ~ e- e
*=1

wnich implies (a). Next for t >0 and *

-2tx.
ftor 2 ~ e J(j + .) 2r <,,,>2 (1+x) 2r <00> = 2

r =1j0 j=1 JO

-Then since ' n * 0 in 0 if and only if Nt4r + 0 V r e£R

3Ttnr-0 V r e R => TtoJn +0 in o

4and therefore condition (b) is satisfied.

Now for s,t eT and 0 e

ao- T A 2 X e Xj2 < O>( 2

Since e is continuous on t for all j >1 then by the Dominated

convergence theorem
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1ra iT t - T + 0 V V 0, r E R
t -S

which implies (c).
' n

Now to prove (d) let 0 e 0 and define n : < 'j oj •- Then
j=1

on 4,

n n

-L~in = ) <010i > 0 L~ Xj < ). Oj>0n:j=:1 <@@>LJ:"j=l <'¢>@

and for m > n and r c R

m
\) > 2 . X2 (1 + X .)2 r<0,> 2 .0 as n,m +

j=41 0 Ir 0=) 'Jo

Hence if p - j<,j>o~ j  we have -Ln + *p on 0. But since -L is

j=1
closed in H and !1.1H is 0-continuous, then 0 e Dom(L) and -L

, ~ 0 , i.e.

i -L@ :~~ - ).L<,@~~
-LO X I <O 0

j=1

and

V-L@i 2 4@1r+2 V 0 C 0 r e R.
r r+1 ~ o rR

Hence, -LO j and -L is 0-continuous which implies (d).

Remarks

1.1.. A compatible family (0,H,Tt) or (0,H,L) is called a special com-

patible family if the generator L satisfies condition (1.3) and 0

is constructed as in Example 1.2, i.e. 0 is given by (1.4).

1.2. The Schwarz space S2(R) of Example 1.1 may be obtained in the fra-

mework of the last example by taking

V .
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d 2d 2 2-- -x H :L 2 (k) Aj - j 1

dx 2

and {j} the Hermite functionals given by (1.1). Then from (1.2)

we have that -L satisfies condition (1.3) for rI > 1 and

- (, (R),L2(R),L) is a special compatible family.
i

The following example occurs in core conductor theory and will be later

considered in connection with applications to neuronal behavior.

EXAMPLE 1.3 Let H = L 2([O,b],dx) and consider the deterministic problem

at - -aV + aAV t > 0 0 < x < b,

(a, > 0 constants),

V(ox) = vo(x), (I)

av (t,b) 0.
,- ~~- (t : = tb):O

Let (Tt) be the continuous contraction semigroup on H defined by (1), i.e.

b
(Ttf)(x) - G(x,y;t)f(y)dy f e 1

where

G(xy;t) = e n n(X),n(y)
n =0

.

2lTr 2
". = c+B(-n-) n I, 1.8)

and

2 1/2 nlx,,~~ * (x )  co(s ) ( ) n > 1.9

Let A :-L be the generator of Tt .  Then (I) has the solution

4.

-'

-,. .-.. .- ' - .. '.-. , -.. --.- -- .,'-..-' I-*.."..,--, - '..' S .-. '-, .,., -.- -,--.',.. . - '." .'.. ., '--? '
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* b
V(t,x) = f G(x,y;t)v0(y)dy , t > 0 (1.10)

0

for vo e Dom(L).

Now consider the stochastic model

: a V + $AV + Wt,(II)

where W is a Gaussian white noise in space time. We shall show how to set

up model II as a €'-valued stochastic differential equation for a suitable defi-

nition of €.

For Xn and @n as in (1.8) and (1.9) respectively and

_d 2

, L = -aI + aA (A- = d

dx
2

define 0 by the method explained in Example 1.2 i.e.

€ :0 { H : (1 + X )r< ,.>2 < Yr E R)
j=1 0

where

b
f= I(x)(x)dx.

0

If p > m + , since {(1 + L + 6( n- )2)-p n } is a CONS for tp,

. 1(+ a+ B(n )-p, m  (1 + a + ( -2(p-m) <
n=1 b n M n=1 b

and then the injection map p Cm is Hilbert Schmidt for p > m + 1
p

Hence 0 is a CHNS and is the linear space of all infinite differentiable

real functions f such that f(k)(o) = f(k)(b) = 0 for all k = 0,1,2,...

Furthermore

I.

.11w 4

*titx
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a) Tt O C 0

b) L- C

c) L - (- 1 + 6A)

and the operator (xL + L) is Hilbert-Schmidt if rI > 7

-rOj 2  OJ "2r
,(XI + (x + a+ a(J7 <

.,j~l j=i

Now we indicate how to set up model II as a '-valued stochastic differen-

tial equation. We proceed heuristically. From (1.10) we have that (11) can be

written as
.

d
dt tvo = "Tt Lvo + Wt'x

Define for t > 0

b
, V(t,x)o(x)dx * e ,

then for (P
"%

d bV

0

b b
= ~LV(t,x)o(x)dx + O (x)Wt~xdx

i.e.

dt[j] = -[LO]dt + dWt[] (1.11)

where

b

WtCO] := f (x) Wtx, (1.12)
0

b

oO] f vo(x)o(x)dx

and

*1 "r1
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EWt[@]Ws4C] = min(t,s)<,>H for *,* e . (1.13)

If on 0' we define Tt  by TtfE ] = fCTtO] for f e t' then L'f[] = f[L ]

and one may write model II as

dt = -L'&tdt + dWt

and (II)'

&o given as above.

where Wt  is a V'-valued Wiener process with covariance <'''>H as defined in

the next section, and a special case of a '-martingale.

Model (II)' is an example of a V'-valued linear stochastic differential

* equation for which we want to solve t c' and

& c C(R+;')

where C(R+;O') is the space of all *'-valued processes on R with continuous

*paths in the strong topology of 0'.

'P.-p

0 4 , , -:Z , ,. .' : , ' : -'-' ; , . ".. '.. .,.-; ' :; " i ,Y " .' -.,--,'. .i ', -; i ; ; .
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LECTURE II

MARTINGALES TAKING VALUES IN DUALS OF NUCLEAR SPACES

Throughout this lecture we assume that (a, '-,P) is'a complete probability

space with a right continuous filtration, (,t t>O" Also, unless otherwise

* explicitly stated, we assume that o is & given Countably Hilbertian nuclear

space defined by a chain of Hilbert spaces pC 4q q 4 p with normsI p q

90.p 1.1 and strong duals 0 C p. We denote by 0' tne strong dual of

0 and by V = (€') the a-field of 0' generated by the sets

{f f[,] < a} E D a E R.

Definition 2.1 A mapping Xt(w): R+ x Q 0' is a V-process if Xt(w)[o] is

a real valued process V e 0 $, i.e.

fw: Xt(w) e B} e V B e G

In this lecture we introduce two special cases of '-valued processes,

namely the @-Wiener process and '-martingales. We give several examples of

Wiener processes and illustrate how some infinite dimensional extensions of the

real valued Brownian motion (as the cylindrical Brownian motion and a sequence

of independent Brownian motions) may be seen as nuclear space valued Wiener pro-

cesses.

In the case of V-martingales we will make the assumption that

EXtjJ 2 < t e $D, t 0 0. This condition is not necessary and will be assumed

only for simplicity in order to show the kind of techniques used in the study of

D'processes. Examples of these techniques are the following two lemmas. They

will be referred in the future as the regularization Theorem and the Baire cate-

gory argument.

.... . ..... . . ... . . .
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Lemma 2.1 (Regularization) (ItS) Let Y: L2 (,3,P) be a continuousA

linear map. Then there exists a '-valued random variable Y s.t.

Y(w)LO] = Y( )(w) P a.s. V e

Moreover there is a q > 0 s.t. P(Y ) = 1.
q

2
Proof. Let V(O) =E(Y(0) ) t* 0 e 0. Since V is continuous there exists

r > 0 and 6 > 0 s.t. if i1 ir 4 6 then V(O) < 1. Hence if 0 = 1/6 we

have

V( ) e2024 212

Let q > r be such that the injection mapping 0qC Cr is

Hilbert-Schmidt and let {Yj}j1 0 be a CONS for 4q. Then from (2.1)

E( y(oj)2) 4 82 i 1 10 2r
-. : j =I R=

j=1 =1 r

i.e. if a, (y(j)(W))2 < -} then P(0) = 1. Define

> Y( oj)(W),j if w e a,

Y(W) =

0 otherwise

where {j}l is the CONS of ' dual to {@i~j)1 . Then Y is a '-valued

random variable s.t. Y e o' a.s. and
q

Y'()[] = Y(Y(W) <0, 0 e 4 a.s. (2.2)

Letting n := jl <tj>q j 'n " r 4 lipn I nq rF 0 so that from (2.1)

q 4
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n
E[ I Y(oj)<,,j>q - y( )]2 + 0 as n + - (2.3)j=1

Finally, from (2.2) and (2.3) we have

E[Y(w)[] - y(o)(W)] 2 = 0

i.e.

Yr@] : Y( ) a.s. V o
Q.E.D.

From the proof of the above lemma we obtain the following result.

Corollary 2.1. Let Y: 0 -L2( ,,P) be a continuous linear map. Then there

exist 0 > 0 and r > 0 s.t.

E(Y( )) 2  2

Lemma 2.2 Let V(.): * + [O,-) satisfy the following conditions:

(1) V is lower semicontinuous, i.e. n + 0 => V( ) lim V( n)

(2) V(.0 + ) +V( ) + V( ) V ,tJ,

(3) V(a ) = Iajv( ) V a e R, * e
(4) V(O ) < -V 0 C

Then V( ) is a continuous function in * and there exist 9 > 0 and r > 0 s.t.

V(O) 4 e1 11r V

Proof.

Let On = { : V(4) < n}

Since V is a lower semicontinuous function on 0, then for each n 1 D1 s
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a closed set of P. Condition 4) implies

D n  (2.4)
n=1

Then by the Baire category theorem, since 0 is a complete metric space, it is

never the union of a countable number of nowhere dense sets. Therefore there

exist o 0 '  1 > 0 and a positive integer r such that

'LU {O e 0: 10 - or < 6 _= 0 rno•

Hence, for any 0 e 0, € * 0 if 6 < 61

0 +0 E
Vo, 0

0

*and

Vol r 0
.4;

and therefore they belong to Dn , i.e.
0

V(6 + no (2.5)

and

V( 0 - ) c no  (2.6)

But using 3) with a : -1

Sv(6 - o) :v( - 60)
V o r  0 0 1 0 r

Then by 2)

!,. V(26-~ V(-E o) + V( - - - ) 4 2no
A 1~1 *0 r 1 r0

and hence using 3), if 6 S

... no/
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Then the continuity of V follows since using 2)

1( - V( V(Co- ~P) n 81- o'
Q.E.D.

As an example of a typical application of the above lemma (Baire category

argument) we have the following result.

Corollary 2.2. Let (Xt)t,,o be a ~'valued stochastic process s.t.

2

Then for each t >0 there exist 9t>0 and r t > 0 s-t.

2 2 2

Proof. For each t 0 define

vt( ) = {E(Ktjfl)2}/2

Applying Fatou's lemma we have that Vt( ) is a lower semicontinuous func-

tion on . Then since Vt satisfies properties (2)-(4) in Lemma 2.2 the corollary

follows applying the named lemma.

Q.E.D.

A result of this type, involving a Saire category argument, was first used

in the stidy of o'-valued Stochastic processes in Mitoma [10].

WIENER PROCESS TAKING VALUES IN THE DUAL OF A NUCLEAR SPACE

Definition 2.2 A strongly sample continuous t'-valued stochastic process

~aJ A~ ~ on (,I,'I,P) is called a centered t'-WJiener process with

'r*.. 'PM %. %% 
. - .JI
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covariance Q(.,.) if Wt  satisfies the following three conditions:
"- Si

5' a) W0 = 0 a.s.

b) Wt  has independent increments, i.e. the random variables

t2 1 n n-i
5-.

-. are independent V 0 ,...,'n c 0, 0 4 tI < t2  ... t , n) 1.

c) For each t > 0 and *c$

* E(e ) = el/2 (tQ( o)) (2.7)

wnere Q is a covariance functional, i.e. a positive definite symmetric bili-

near form continuous on 0 x 0.

01

S"Remarks

2.1. Let (Wt) be a '-Wiener process with covariance Q. Then

{Wt[O], * C b, t > 0}

is a centered Gaussian system and

E(Wt[]Ws[€J]) = min(s,t)Q(O,,) ,, E , s,t 0 0. (2.8)

2.2 A V-valued process (Zt)t,) is a Non-centered Wiener process if

there exists m e V s.t. Zt - tm is a centered Wiener process.

We now prove the existence of a '-valued Wiener process following

Perez-Abreau C13].

Theorem 2.1 Let {Y(t,O), * £ b, t > 0} be a centered Gaussian system of random

variables s.t.

E(Y(t,,)Y(s,O)) = min(t,s)Q(O,,) (2.9)

, %5.5,,

• " . .. -".. '. ' " :':" " " -'"-"- .'"- ." -". -."''.. . " " . ." "". '- "" "-"-. " .- ".".. .-- .. ., --, . " 5- .' ." -,
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wnere Q is a covariance functional on t x t. Then the following is true:

1). There exists a centered '-valued Wiener process W = (Wt)t o with

covariance functional Q s.t.

Y(t,,) = Wt[,] a.s. V e P, t > 0

2). There exists q > 0 depending only on Q and not on t s.t.

- W. c C(R+, q) a.s.

where C(R+,q) is the space of strongly continuous functions from

R+ to (D

-roof. Letting V2 (o) : Q(oo) 0 c , V is a function that satisfies con-

ditions (1)-(4) of Lemma 2.2. Then there exist e > 0 and r > 0 s.t.

al 2 V£ 0. (2.10)

3' 3y t.e nuclearity of 0 there exists q > r s.t. the injection o t- , is a

Hilbert-Schmidt map i.e. if ({j} j.lc t is a CONS for bq then

;j j 2  < C. (2.11)

Hence by (2.9), (2.10), (2.11) and the monotone convergence theorem we have

jl j=l j=

Tnus if 2t = Q : > Y(t, 2 < -} then P(Qt) = .
j=1

Let $j }j 1 be the CONS of 0' dual to {j j and define

oV

@,4_. ,.t.> ::, -':'- ..;..'. .\. .°.'- .=-' -2...:.2 -'-.-( ',-.- -'-:.%"- .; - ,i-)'•;.i,,
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SY(tOj)(W)$j W C Ot

j=1

Wt(W) =

0 otherwise.

Then W t q@' a.s. for all t >0,

Wt(w)[0j] = Y(toj)(w) for w e t

and

W I Wt(w)YJJ[ (2.12)
j=1

For 0 , = ). <O,*jq>qj = Oj j] it follows from (2.10) and
j=1 P1

101 r 4 m0Eq r 4 q

that

n n n.. E( Y(t,$)- I Oj[o]Y(t,Yj)) 2 :tQ(O - I $j[c]Cj, 0 - I Si[0]0j)

j=1 j=1 j=1

n
teio- 2 0.

j=1 q n+-

Hence, from this and (2.12) we have

Wt[,] = Y(t,$) a.s. VO e o, t 0.

It remains to show that W has a strongly continuous version.

We recall that if G is a real valued Gaussian random variable with zero

2S. mean and variance a , then

E(G4) = 34

Then writing XJ z y(t,oj)

-..-. .--. - -.....**J** -- * . .; . - .-- .-.--- *-J;K. .. ,-- -.':..--~~ ~ ~ ~ i'

,~. ,.** .~' ~ .~**j~. ~ ~ V '
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E( XJ _ - ) = 3 It _ SI 2 Q( jOj}2 (2.13)

Hence, using Holder's inequality, (2.13), (2.10) and (2.11) we have

1 S -q j=1 t S

= E( (Xj - X4 + 2 (X _ xj)2(Xk Xk)2)
j=1, s j<k t t s

2. X XjA 4 X)+ - 2 (E( j jE - - 4)/

j=I j<k s t S

, =31t  s s12{ } Q( jOj)2 + 2 Q( j;Oj)O(00,0k)

'., j=1 j<k

It " SI2{ Q( j, )} 2 = K2 1t _ SI2

4 .j=1

.i e

EaW - Ws ! q 1 K2 1t - S2 K constant st e R+ (2.14)

Then the proof of the theorem is completed using the following variant,

given in Ito [6], of Kolmoyorov's theorem on the existence of continuous versions

for stochastic processes.

Theorem 2.2 (It6 [6]). Let X be a o'- valued process. If there exist positive

constants c,B,K s.t.

E(iXt - qs ) 4 Klt - s1+B
t s-q

then X has a continuous '-version.
q

In the case of a special compatible family the index q in (2) of Theorem

2.1 can be chosen in the following manner.

* .. 4-, - *
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4
-1,

' Corollary 2.3 Let (0,H,Tt) be a special compatible family and assume the

hypotheses of Theorem 2.1. Then there exists a o'-valued Wiener process

W = (Wt)t), with covariance functional Q such that

W. e C(R ; 0q) a.s.

for any q > rI + r2 where r, is given by (1.3) in Example (1.2) and r2  is

such that

Q( , , ) 51nn V , £ S
*2

for some 6 > 0.

Proof

Form the proof of Theorem 2.1, writing r2 instead of r in (2.10), q was

taken such that the injection $q C* 0 is a Hilber-Schmidt map. But in the.q 2
case of a special compatible family (see Example 1.2) the injection q Pr

is Hilbert-Schmidt for q > r 1+ r2. Q.E.D.

Some examples of V'-valued Wiener processes are now introduced.

EXAMPLE 2.1. Let (t,H,L) be a special compatible family (see Example 1.2 and

Remark i.1). Recall that (see (1.7)) there exists r1 > 0 s.t.

61 := 1 (1 + -2r 1~j--

and the injection 0q C+ or is a Hilbert-Schmidt map for q r r + r . Let

be the inner product in H and define

Q0 (0,0j) = < t, 5 F

Then from Theorem 2.1 there exists a V'-valued Wiener process (Wt)t 0  with

4' - II *.I VI

bud , ' *
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covariance functional Q0  s.t.
N.-.

W e C(R+;,Dq) a.s if q > r,

and will be called a Standard Wiener process.
,.,

More generally, if r > 0 and
NE

-N then there exists a t'-valued process W e C(R+: &D) for q > r + rI.

As will be shown in later examples, in applications the Q is not always

- given by one of the inner products on the Hilbert spaces defining ?.

Nevertheless since Q is continuous on t x $, then, as in the proof of Theorem

*2.1, there exist e > 0 and r > 0 s.t.

(RKu2  V' E 4
r

and therefore there exists a o'-valued Wiener process W s.t.

W e C(R+;tq) for q ) r + rl.

EXAMPLE 2.2. Let 2(R) be the Schwarz space of Example 1.1 (see also Remark

1.2). Then ( ,L2(R),-d 2/dx2 + x2/4) is a special compatible family where

-( )j are the Hermite functionals given by (1.1), X= j - >, j < I,
is the inner product on L2(R) and r1 > /2. Taking @ : x(R) and H = L 2(R)

in the last example, from (1.2) we have that if Qo( ,,) = < '>o then the stan-

dard Wiener process W = (Wt)t)o in .2(R)' is such that W c C(R+; for

q > /2. Clearly, there is no smallest q such that this happens.

For 0 define

w(I) W t[D2 ] where D = d

'N. Then the covariance functional of the €'-valued Wiener process W (W )t>

,0t
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iS

Q(1)( ,) = Qo(D ,,D2 ) = <D ,D 2> 0

-. We shall snow that W E C(R+; ) for q > 3/2. In general we will prove

the following: Let Qp(0,) = < * t>p O, e (b p 0, and let W = (Wt)t o be

the corresponding '-valued Wiener process. Define

= wDl)c0] = wtCD 2 0] (2.15)

then WM is a V'-valued Wiener process s.t. W(M ) e C(R+;9q) for

q > p + 3/2:

Clearly

Q(1 )(O,,) = <D20,D 2,> * (2.16)

then from Example 1.1 for €

2Q()(@,o) <D 2,D'O> n (n + 1/2 )2P< 2 00 >2

•n 0n=1 n

). (n + /2) 2P< 0,D2 >2 (2.17)
n=1 n 0

But from (1.1) with the notation of Example (1.1)

d x - X 2 /4 1/4
dx. On+ n! (/g(x) Hnil(X) + Hn(x)[-Z e (2n 4 ]

= rn / x7'- Hni(x) - xV g(x) Hn(x)}

n=~x 1z~ n'gx)H ' SV g(7xH x+22 /gx{-(n + I (x) H (x)}

n-1 2 )n+1 -i

1n! On ln 1) On+2 _ Vn Vn + 1
-~ - 7 (nO n+2

- .e. I" (n-l)! - (n " _ @n+2

iae

0 4 . - . - . . . . . . . . , S S~ .** - . -
-. ' ,';'," "" "':.-'. ", ".""-"".""."",''.''.''-"",":'.' ,"- .-"'".".- "' ".' ."'" .""""0 ," .".- "" -". .' .'"..":'""" " >'< " :- 1" -'--'-- -
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d n +
dx n+1 - n 2-T- n+2

Hence

d2 Vn(n-1) - 2n+1 ) + ,(n+l)(n+2)

dx2 'n+1 - F n-1 4 n+3

and

_2 > (n-1)(n-2) < - 2n-1 > + <n(n+1) > (2.19)
< 'D2@> : 4 n n-> 'no -If,- n+2>o

= an<0, n-2>o + bn< ,'n>o + Cn< , n+2>o

where anbnCn = O(n).

Then from this and (2.17)

- a, I (n + 1)2p+2<'n-2>o + a2 (n + 2p+2<"Itn>2
n -).P.' n

+ a 1 2p+2 >+ a3  ( (n + < ,,n+2 > 0

n

2 al 1' (a' alsa'3 constants).

Since the injection 2 q_ = p+1 is Hilbet-Schmidt for q > p + 1 + 1/2 = p + 3/2,

we have shown that the V'-valued Wiener process given by (2.15) is such that

Wrl) E C(R+; 2 q) a.s. for q > p + 3

Cylindrical Brownian motion

.Definition 2.3 Let H be any real separable Hilbert space with norm u.1H* A

family {Bt(h): t E R+,h c H} of real valued random variables is called a

. 'w(, "' r ,'. A "K .Il 'N% NV• # " "' ' ', ... 'W , ", .. , " -
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Cylindrical Brownian motion (c.B.m.) on H if the following conditions hold:

(1) For each h e H h * 0, ahHIBt(h) is a one dimensional

standard Wiener process.

(2) For any oia2 R and h1 ,h2 c H

Bt(clh I + c2h2 ) = alBt(hI) + a2Bt(h 2 ) a.s.

(3) For each t > 0 and h e H Bt(h) is an ' t-martingale

where

t (Bs(k): s ( t k c H)

From (1) we have that Vt > 0 and h e H

4.2 2
E(Bt(h)) = tlhUH

and therefore since by Sazonov's theorem exp(- t ah1 2) is not the charac-

. teristic functional of a countably additive probabiilty measure on H, there

does not exist a process B in H s.t.-t
Bt(h) = < Bt,h> H

From (1), (2) and (3) we have that

E(Bt(h)Bs(k)) = min(s,t) <h,k>H . (2.18)

If en is a CONS in H, B Bt (en) is a sequence of independent one

dimensional 3rownian motions, and if h £ H

h = . <h,en>H en
n=1

for

.4r.
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h(n ) n
4 h,e> i

>He

Bt(h(n)) = ). <h,e > >HB .
j=1

For n > in,

E[Bt(h()) h(m))]2 = t ml <h,e.>2 0 m

j=m+1 j H

and therefore

Bt(h) = ) <h,ej>HB a.s. Vt >0 and h e H. (2.19)
".-. j=1

Conversely if 3Jt( )1 ) is a sequence of independent Brownian motions then

B1 defined by (2.19) is a c.B.m. on H. (Note that the RHS of (2.19) converges

a.s. for each t o 0 and every h e H).

The following result relates t'-valued Wiener processes and cylindrical

Brownian motions.

Theorem 2.3 Let W = (Wt)t)O be a '-valued Wiener process with covariance

functional Q. Then W defines a Rigged Hilbert space

and a cylindrical Brownian motion W on HQ where HQ is the Q-completion of

Proof. Since by assumption Q is a positive definite continuous bilinear sym-

metric form on 0 x 0, Q(.,.) defines an inner product on 0 x 0. Let HQ be

the Q-completion of 0. Since o is separable then HQ is separable.

Let { jj1 be a CONS for HQ. Then (Wtijl, where Wt Wt[ j] ,

is a sequence of independent standard Wiener processes since

i4s

,.,€ , .. ..: • .-- ~-.. . . ... . . . -... < -. . *. . .*.-- .- - 5,.-.- . .. _- .- ,.; . .. . .- "- -,



E(WjW) min(s,t)Q(#j¢ ) :mi ~)j

For h H HQ h = <hYi 0j
,.j j' >
'"'..." Wt~h] : 0,0 <h¢> W

"Z'"'. j "

defines a c.B.m. on HQ as in (2.19).

0'-VALUED MARTINGALES

Most of the material in this section is taken from Mitoma [10].

.Definition 2.4 A V'-valued process M = (M t)t 0  is a V-martingale w.r.t (at)

if for each e 0 Mt[ ] is a martingale w.r.t.( t).

Since it will help in our later work, we shall also assume the additional

condition

E(Mt)C,])2 < - c C t ). U. (2.20)

Theorem 2.4 Let M be a o'-valued martingale w.r.t. (3t). Then there exists

a o-valued version M of M s.t. the following conditions hold:

(1) For each T > 0 there exists P PT > 0 s.t.

j w " M e D([O,T]'; ') a.s.
'p

. where D([ , p];) is the Skorohod space of right continuous functions with,p
left hand limits (r.c.l.l.) from £0,T] to Ip.

(2) M is r.c.l.l. in the strong o'-topology, i.e.

M c D([0,-):V') a.s.

0!A,
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-. of. (I Fix T > 0 and define V T() = E(MT[$] 2 ). Then by Corollary 2.2

tnee eTst = > 0 and r = rT > 0 s.t.

VT( ) 810 r  V e D (2.21)

.et ) e a countable dense subset of [O,T]. Then by(1.3) VI in C3], for

E(sup Mt[ ]2 )  4 sup (E M tC] 2) 4(E MT[0] 2) . (2.22)
t ea 0 ea 4T

- . Let q r r be such that the injection map t qC r is Hibert-Schmidt,,. .
r isHl.rtShmd

i.e. if ) is a CONS for 0q then

.- O, Ic u < CO.
j="1 r

Then from (2.21) and (2.22) we have

E( sup (Mt[j])2) : \ E(sup (Mt ])2) 2 42 1 2 <
j:! tED j=l teD j=1 *

So, if 1 = E sup Mt[j]2() < _}, p( 1.
j=1 tcD

Since each real valued martingale Mt[.j] has a right continuous modifica-

tion t , writing

j J
Q:: {W e Q: Xt(w) = Mt[,j](w)}, we have

I 1 for t E D. Then the set defined by

2 := (n 40 S11
t ED j .1

has probability one and if ' 2

sup (X (w))< .

@4t4

.4

... 2.

- ~ Ll O . i e !.T
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Let {i } be the CONS of 0 dual to {0iJ}i) and for 0 4 t 4 T

define

. j = 1

Mt(w)

0 otherwise

Tnen for 0 % t 4 T P(M s) 1 1 and M (w)[@] = Mt(,)[€] for all , e €
5)

I

w E 2 i.e. Mt = Mt a.s.

Next since for s,t e CO,T] and j > I

A)jw jW1 4 sup (X w ,( :a)

by the dominated convergence theorem, fixing w in Q2.

lim aMt(W)- MS(W) 2 = Ir i . (Xj(W)- Xjs(w)).Ij 2

S -q s i= j-q
s~t "q j=1 j=1t

S=lim Xj (W) xi (W) 12 i im IX (W) Xj (W.) 2  0
s+t j=1 j=1 s+t 5

the last assertion following from the right continuity of Xj(w). In a similar

fashion the fact that Mt  has left hand limits in the 1-1 q-norm is shown.
tq

Thus we have proved that for each T > 0 there exists qT 0 s.t. Mt has a

r.c.l.1. version M t in the IE -norm, i.e.

- . M. c 0([O,T]; o').

- (2) Let Tn t ., then by (1) there exists qn s.t. Mt has a version

M with

M~n c D([O,T];s) a.s.n.4--n

SMn 0T'S

.5-i- ([ ]
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Witn the notation used in the proof of (1) let a= {2. If W C 93 define

for 0 t <n

Mt(w) = (w) for Tn-I < t < T, (To  0).
Mt n

Then P(,M c 1 and Mt(w) = Mt(w) for w e "13.

Hence for t > 0 and s > 0 there exists 6 > 0 s.t. if t > s + 6
t

.. t(W) - Ms (W)R-q < C

- for t < Tn and therefore for any bounded set B t

sup I(Mt( ) - Ms( ))C f]l  < , t > S + t

.. M t  is strongly right continuous. A similar argument shows that it has

left hand limits. Q.E.D.

Remarks

2.3) The above theorem can be proved without the assumption (2.20). The

proof is very similar to the one given above using (l.l)VI of [3] instead of

(2.22).

?.4) If Mt  is a '-valued martingale s.t. for each c

sup E(M[,] < (2.23)

tne-e exists q > 0 s.t. Mt  has a version Mt e D([O,-),')' a.s. This is seen

•ising the fact that if 3 is a countably dense subset of R then from (2.22)

( sup (Mt[@] c 4E(M [f] 2 ) <.
t eD

7ne next tneorem is proved in a very similar way to Theorem 2.-4.

%.8'

% %"
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Theorem 2.5 Let M be a V*-valued martingale such that for each , e t

has a continuous version. Then there exists a o'-valued version M of M such

*[ that the following conditions hold:

(1) For each T > 0 there exists P = PT > 0 s.t.

-ik7 e C([OlT].@) a.s.

4 f

(2) M is continuous in the strong 0'-topology i.e.

SM C(O,-)';V a.s

(3) If sup E(Mt[,]2) < then there exists p > 0 s.t.
0 (t <

M - C([,-):.s

An example of a P'-martingale is the V'-valued Wiener process with

?t = G(Ws[]; 0 4 S 1 t, C 0)

and for which (Theorem 2.1) there exists a continuous version on C([O,-); t')

for some q ; 0. This shows that condition (2.23) in Theorem 2.5(3) is not

necessary for a $'-valued martingale to have a version in C([O,-): O°) for some

The following example (due to G. Kallianpur and S. Ramaswamy) gives a t'-

valued strongly continuous gaussian martingale 4t for which the following is

not true: There exists p independent of t s.t.

Mt 4t , a.s.

t,

I

F VW''W "-" -CC. . .. .. .* W t .. " " " C C "" *:,- "" ' &£ ' " -I,'" -"' i - :" ; w -' S " ' M ? "'m """ r .
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EXAMPLE 2.3 Consider the CHNS of Example 1.2 i.e. (D,H,L) is a special com-

patible family where (I + L)- is a Hilbert-Schmidt operator for some rI > 0

.L -- =

... ~ Lj=,j ,j

a. 2r ,
( + j) <-

j=1

for {}j _ G a CONS for H.
Define for s E [0,-) and e 0

f(s,¢) = (1 + x.)S< j,¢>

j=1 ' J

Let (3s) be a real valued standard Brownian motion. Since for each t > 0

and E t

t
f f(s,O) ds < a

.9. 0

then the Wiener integral

?.+ t
X t, : f(s,')dBs

is a Gaussain martingale for each 0 c *. Since f(s, ) is linear and con-

, ." tinuous in t then tne linear random functional

..,. t ,: L2(

-S. is t-continuous. Hence, by the regularization lemma there exists a '-valued

random variable X s .t.

,...X X a.s.

Then for I (Xt't is a *-valued martingale such that V e 0

(.-~] has a continuous version. Hence by Theorem 2.5 X has a strongly con-

5 :' ,-.,.,',-'+....+.. :.-. ; v .".,.+.i...'."-" ".."- : . -".-'-i.-.-'-'''-"... .i-'... . •. ..... ..-

S t .,- 5 5 t
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tinuous version also denoted by X.

Now suppose there exists p > 0 s.t. X E (D a.s. Vt > 0. Take

p > rI ,and consider

n -p-ri
hn ( oee (n) =I (I + r.~j=l

l Then {(n)} converges in t to * say, and therefore Xt[o(n)]I l[].
2_ p n+.

But since Xt  is L -continuous

E(Xt[o(n)]2) + E(Xt[.]) 2 < m Vt > 0 (2.24)
n

the finiteness of the limit being a consequence of Xt[ ] being a Gaussian ran-

dom variable. On the other hand, if t > p + rl,

€. E(Xt[@(n)]2) n E()( j - p -r It@j
E()c (1 + Xi--r

j=1

t n -p-r1  2

: f (f(s, (1 + Xj) *.)) ds :

0 j=1
•t n .,

f ( ( ,)ds

*0 j =1

t n _P-r +S

> ( (I + ) ) 2ds
p+r I  j=1

.- :-Then by Fatou's lemma

2 '."- lir E(Xt[ (n)]2)
%'%"t

which, in view of (2.24) implies that E(Xt[ ]) = -, a contradiction.

'•. .°
@-;,

1?°
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STOCHASTIC INTEGRALS TAKING VALUES IN A DUAL OF A NUCLEAR SPACE

Consider a '-valued right continuous martingale (Mt)t>O w.r.t. a filtra-

tion ( t~to such that

E(Mt[j)2 < Y e (D and t > 0.

Then for each E 0 there exists a predictable right continuous, non negative

increasing process AO such that Xt[ ]2 s a martingale, which implies

that

E(Xt[¢])2 =EA (2.25)

Let 2(M) be the class of real valued predictable processes

f:R x 2 R such that

E f. f 2 (w)dAO(cu) < Ve D

0

Before introducing the definition of the stochastic integral of a real

valued process w.r.t. the V'-valued martingale M t we prove the following

I eqma.

Lemma 2.3 For f e k2(M) and t > 0 define

f t
Vf(,) : E f f2(w)dAs(w) (2.26)t 0 S

fThen Vt is a continuous function of 1.

Proof. We first assume that f is a bounded function, i.e. Ift(w)l < K V

. t > 0 and e Q . Then by (2.25) and Corollary 2.2

Vf() K EAO KE(Xt[])2 K 9t1OI
t t trt

'p.

p.
b-- .,, ,--. . ,-,-.-..,.,, ,*...-...-. .... ..... . .- :Wa..,- , 2 , :m ' a
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fwhich implies that V is O-continuous.

Next if f ,(M) define

fK(t 1w) = f(t'w)l[-K,K] (f(t,w)) t > 0, w e S.

Then IfK(t,w)I 4 K and f2K(t,w)+ f (t,w) y t 0, W C 0.

Denote by v the measure on the a-field of predictable sets defined by

the relation

t
f ydv, = E f gsdAs

0

where g is a non-negative predictable function. We have, using the monotone

convergence theorem that

t t
E f f2 dAO : I 2 lim f f2 dv, : lim E fdA.
o [0,t1XQ k - IDt]X2 k - 0

Hence V.t( ) is the limit of the increasing sequence of continuous functionsf, t
k fVt ( ), and therefore Vt( ) is lower semicontinuous.

v, ~ Then the Baire category argument (Lemma 2.1) implies that Vt(C) is D-

continuous. Q.E.D.

We now define a o'-valued stochastic integral for f c L2(M)•

Definition 2.5 Let f e L,2(M). For * e 4 define

t
Yt(I) :: fs dM sc]

where the RHS is the real valued stochastic integral w.r.t. the martingale

<aMt.]. Tnen Yt(O) is a real valued martingale with a right continuous ver-

sion and by Lemma 2.3

w "* .. . . - -. x .-.$- .2- .. K.-. ,. -, c. -,9-. .. 7 ,.. , .,
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9t

.E(Yt(p))2 = E rf 2  A
0 s s

is a continuous function of 0. Hence the linear random functional

" Y ( ') : t - L2('] ,P) is continuous and by the regularization Lemma there

exists I(f) c D' a.s. such that

It(f)[@] = Yt(O) a.s. V E : 4, t ; 0.

By Theorem 2.4 there exists a version, also denoted by It(f), which is

r.c.l.l. in the strong &'-topology. The right continuous '-valued martingale

i"' ' ' It(f)

wt
SIt(f) fs dMs

is defined to be the stochastic integral of f w.r.t. the '-valued martingale

Mt.

We now introduce a D'-valued stochastic integral of a 4'-valued process

,.r.t. a real valued martingale.

Definition 2.6 Let m = (mt) be a real valued right continuous martingale

such that E(mt) < - V t 0 0. Let As = <M>s  the integrable increasing pro-

cess of Mt. Let (Ft)t)0  be a predictable '-valued process such that

t
E I F S[]2 dAs < V 0 e 0 and t > 0.
0

Write

t

Yt()= f FS[ ]dM s
0

:' ' then

- - EYt(. )2 :E f Fs[j]2 dAs

-b -.- o.. '- -' -: ,-' , -'".--- .-", .,f - .'..' .", ," ."-.--.. . .. " ,. .-.-. .-/ --.- .., --'-.--"- ,: .' .' 5

.-.'-" " - .,,r'. ,"" "' .., .,-.-. ' ' .r ...., -..-.... < 2C z- .,-'.- .• .-, - *-". ' -" ,.' . ,: -, . '



-38

and by the Baire category argument, the regularization lemma and Theorem 2.4

tnere exists a o'-valued right continuous martingale Jt(f) s.t.

t(f)[ ] Yt(O) a.s. V 0 e 0, t ; 0.
t

We define dt(F) := f FsdMS as the V-valued stochastic integral.
0

.

.p 
m

'.A

-
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LECTURE III

SORNSTEIN-UHLENBECK STOCHASTIC DIFFERENTIAL

EQUATIONS ON DUALS OF NUCLEAR SPACES

We now Introduce a special class of linear stochastic differential

equations with values in duals of nuclear spaces, namely Ornstein-Uhlenbeck type

processes witn a nuclear valued martingale as a driving term.

Let (Q,j,P) be a complete probability space with a right continuous

filtration (3t)t>O* Let c- H r- V be a rigged Hilbert space, A:€ - 0 a

* continuous linear operator and (Tt)t)O a strongly continuous semigroup such

that ( ,H,Tt,A) is a compatible family (see Lecture I). Let (Mt)t o  be a

'-valued martingale (Definition 2.4) which is right continuous with left hand

limits (r.c.l.l). Consider the stochastic differential equation

d t  't+dMt t (3.1)

" where n is a o -measurable V'-valued random variable and A': ¢' 0 €' is

defined by the relation

,. A'f[o] = f[Ao] V f e' ,

A special case of the SDE (3.1) is

dt :A'tdt + dWt t 0 (.* (3.2)
O : n

where Wt  is a '-valued centered Wiener process (Definition 2.2) wit'l

covariance Q. From Theorem 2.1 W. c C(R+: 4) for some q > 0 where q

depends only on Q and not on t.

-A.
%l
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In this lecture we solve the SDE (3.2) (Theorem 3.1). The general mar-

tingale case (Theorem 3.2) was considered in Christensen [1].

Definition 3.1 We say that the SDE (3.2) has a o'-valued solution = t)t) 0

if the following four conditions hold:

i) (%) is a t-adapted and '-valued.

ii) E € C(R+; ') a.s.
t

iii) -%[J] = yCO] + j &S[AsO]ds + Wt[O] V o 0 a.s V t ) 0.
0

iv) For each T > 0

E( sup I [L]1 2 )< V*
0 t 4T

Remark 1. Condition (iv) above is implied by the following condition: for each

T
Ef(sCAs])2ds< V **c

0

Proposition 3.1. If ()ttO is a solution of the SDE (3.2) then for each

T > 0 there exist qT > 0 and a version of (denoted also by ) such that

c C([O,T]; a.s.

and

t
t[] =[] + f &s[AsO]ds + Wt[f] V 0 E 0, 0 4 t 4 T a.s.

V , 0
9/.,

Proof. Given T > 0 define

(0) := E( sup t[.]l2)
0(t(T

Then by condition (iv) in Defintion 3.1 GT()) < V s and clearly
,( <,

.p.I
I -: - . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . , . . . . . . . . . - - - . . - - . . ,

Ed ,., . : ,,W ;. . '., " • "? ., . - .* ij * : .- - - . ', '. - - , .
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GT( 2 1) + GT(02), GT(a l) a I aGT( I), 1I'2 e 0, a e R. Next

sup IJ[o]I  is a lower semicontinuous function of t. Hence by Fatou's
0 gt <T

Lemma G T( ) is also a lower semicontinuous function of *. Then by a Baire

category argument there exist BT > 0 and rT > 0 s.t.

E( sup ]2) THI 2  V (
Oe~t<T T112 TT

Let PT > rT such that the injection map pTC-, is Hbert-Schmidt and let

{1j I j 1 C be a CONS for PT with dual basis $ }j .l a CONS for p*"

Then

E( sup Ir t[.j1 2) 2 8T *. j <

-=1 j Ot<T j= 0 rT

Define

-= (W: ) sup I W)Cttj ] 2 < -0}

j-1 :0<t4T

Then P(.1T) = 1. Next define

=1 (W) C ¢j I -Q

"A;

i 1 ( t ¢ - o m[ j ) :

0 W k QT

Hence, e e 0 0 -c t T a.s. and te(w)] = re (w)C] V E and w c'T
M oreover by the dominated convergence theorem if t,t0 E [0,T]

lim IYWc~) I 2 ()~l t() 1 2
ttQ ~ ~~i (W) I =p lim ),((if.]- ().) =
t 0- -P tt' 0  L0

i.e. 0 ([,]; ) a.s. and therefore
PT

P(W: MT(w) sup n t2 < -) : 1.
0 <t rT -PT

F...m
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From now on we will write t instead of

Next for w 'T and 0 < t 4 T define

t
--Yt( w l Es()CAs¢]ds

We will show that YT (w) E: C([U,T];t, ) for some IT > 0:

IYt(w)[j1 < MT(w) f RA saPT ds. (3.3)

Then using the continuity of the map s + A V , by a Baire category argu-

ment there exist e6. > 0 and nT > PT st.

sup ly(W)NI2 < M2 ()8'1
04 t4TLC, < T~ nn T

l''' supT

Then Yt(-w) O V 0 4 t 4 T w E a, Let IT > nT be such that ' - 0nn T n

is Hilbert-Schmidt and let {e i }j>  C be a CONS for 0'T with dual basis

Ie }j a CONS for 0 T"Then

4, sup lYt(w)e e]I2  M.2(W)e 2 lej1 2  < -

j=1 O4T T T j 1 nT

Hence since from (3.3) Yt(w)[f] is a continuous function of t on 0 < t 4 T

for each e 0, by the dominated convergence theorem we have

lim UYt(W) - Y ) (W)l T
2  lrn (Y e.I - Y Ce]) = 0 t,t E [0,T]

t i -0 t 0 T -I t-t0  j=1 t to j

.3

i.e. Y (w) e C(CO,T]; V ) W E aT"rt

Then we have shown that f A' Esds c C([O,T];kT) a.s. for some IT > 0. Hence
0 sT

taking qT = max(roq'PT',T) we have that

-w t
St  Y + J As' tsds + Wt c C([O,T];' ) a.s.

0

.%w
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.,,-

Then by conditions (ii) and (iii) in Definition 3.1, for each T > 0

P(Zt = t 0 4 t - T) 1 1 Q.E.D.

*31 . -

Theorem 3.1 Let (0,H,T ) be a compatible family and assume that there exists

r > 0 s.t.
0

Eu nf 2 <

Then (3.2) has a unique solution given by

:= T~n + f A' TtsWsds + Wt  a.s.

*i .e.
el

t
.'.t] =[Tto] + Ws[TtsA]ds + Wt[,] V 0 t (3.4)

satisfying the following properties.

a) For each T > 0 there exists P = PT s.t.

C([O,T], ' ) a.s. and E( sup i <
T 0.t4T -PT

b) If {ej}. 0 is a CONS in Op and : tej] then

& J e. converges uniformly in CO,T] in 4' a.s.
t

j11

.. c) If in addition (.,H,T) is a special compatible family (see

Example 1.2 and Remark 1.1) from Corollary 2.3 we have that

q > r1 + r2. Then the solution = (t) of the SDE (3.2), 2-'

is such that E : C(R+;o) a.s. where p >max(r + r 2,ro )

is independent of t.
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We will give the proof of (a) and (b). The proof of (c) is given in Kallianpur

and Wolpert [7].

The following Lemma will be useful in the proof of the theorem.

Lemma 3.1 (Christensen [1]) For each F c ' and s < t

t t
F[T t~s - F[] f F[T u 5sA]du = J F[Tt-uA0]du V * c . (3.5)

-.. S S

<9 Proof. Since we have a compatible family *(O,H,Tt) Ttl is a strongly con-

tinuous semigroup on the *-topology and if

" It * -

(0 E 0: lim - AO in the 0-topology}
-.

c0

tnen f is dense in o.

Then for all I e T  and 0 <s < t,

du - F[T u-s] - F[Tu-s A] and

t
FETts] = F[O] + f F[Tu-s A]du

5 -

Next for some q > 0 IF[Tu-sAO]l < FiqiTu-sA01 . efine

G(o) = sup tTu-sAoIq

Then by the continuity of "i and A G(O) < - V o c @ and it is a lower

semicontinuous function of 0. Then by the Baire category argument there exist

- > 0 and r > 0 s.t. V u c [s,t]

aT U-Ai q ei r V E

Hence, since F, T and A are continuous, by the dominated convergence

theorem if n in D{n }  '

w'." wn

U,

U , ] d. . o ". " " " - -" " , - - - . - • " " " - " " - • " ° m • ° " ' ,
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O" t t
T FTu-sA n]du f F[TusAO]du

SS n e-s

The second equality in (3.5) follows in a similar way. Q.E.D.

-' P-oaf of Theorem 3.1 Let 2 be such tnat P(li) 1 1 and

J E 1 Q >  W.(,,) : C(R+ i, ).

t
Step 1. For t > 0 the map + j Ws[TtsA]ds is continuous and linear on

0

-Let E 0 4, then

t t
- J Ws[TtsAO]dsl W q I t- IqdS%. 0

sup OW -lq Rt(O) (3.6)0 rs rt s

wnere

-p t
Rt(,)= r iTt_sAOnq ds.

Next n A in }implies aTt.sA~nllq  oTt-sA01q . Then by Fatou's lemma

'. 2. Rt(O) 4 lira Rt(On)

i.e. Rt( ) is a lower semicontinuous function. For a c R clearly we have

Rt(ao) ajRt(o) and for 01' 02 c 4

R + R + Rt(O 2)

Hence since Rt(4) < Y ¥ e $D, by the Baire category argument Rt( ) is con-

tinuous in and there exist 9 > 0 and r > 0 s.t.

tt

Rt ' a t 4 0 4.

S.IJ

%P..,

O.

@-4 j 4 ' - w Q " '' # 'w " , 4 .% % -

"1' " ' ' *" - , " " " "- . " " " " -' " "-" ' -" " ' " ' ' "
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. Then from (3.6), for each fixed t > 0

t
I J W [T A ]ds 4 et  sup 1W I-q • 101 V 0 C

0 O4st t

t
and thus the map 0 W W [Tt sAo]ds is continuous and linear on t. Write

0 s A

1 t

t =f Ws[Tts AO]ds
0

For each t > 0 define

+ (w) + Wt(W) if W C Q

(3.7)

0 otherwise

Step 2. We check that is a solution of (3.2). Let w c 2

Using Lemma 3.1 with F = Ws  and 0 + AO we have

t
Ws(w)[TtsA0] = Ws (w)[A] + f Ws(w)[ru-sA 2 ]du (3.8)

s

Using again Lemma 3.2 with F = n and s = 0 we obtain

t
nCTtO] = nCo] +( { nTuAO]du (3.9)

Substituting (3.8) and (3.9) in (3.4) we have

-p. t
t(w)L I = n(-,)L,] + f n(w)CTu A¢]du + Wt(W)C]°0

t t t
+ W ([)CAO] + f f Ws(w)CTu-s A ]duds0 0 0S

Interchaning order of integration in the last term of the last expression and

using (3.4) we have

'O.
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t0"0L-.' .< :. .t )[] :n(w)[O] + r n(w)CT AO]du + Wt(W)[@]

t t u
+ f W (w)[AO]du + f Ws(w)[T usA2 ]ds du

0 ~0

, :n(w.,)[O] + [ n(w)CTuA]du + Wt()[,]

t u
+ j {W(w)[Ao] + J WS(w)CTu s A2 ]ds}du

0 0

i..e. V e and 0 < t < T

t
St(W)[t] = n(w)[f] + u(w)CAO]du + Wt(w)[] W E .1I"

Hence condition (iii) in Definition 3.1 is satisfied. Observe that

(t,w) - )t() is (()I(r+) x73 -measurable and for each t ) is

S-measurable where

It anCn[¢],Ws[]: s 4 t, 0 e (} V (P-null sets}.

Next, from (3.4), the assumptions on W and n and Step 1 we have

E( sup ( t[o]) 2 ) < 3E( sup (n[Tt]) 2 )

0 t <T 0 ct 4T

t
+ 3E ( sup (f WsETts A]ds) 2)

*- O<t 4T 0

+ 3E ( sup (W E 0])2
0 t-t 4T

c I€1 < gV O (3.10)
T

for some constants cT > 0 and mT > 0, which shows condition (iv) in

Definition 3.1. In the next step we shall show that t satisfies (ii) in

Definition 3.1.
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Step 3 Let pT > mT s.t. the map PT *m T is Hilbert-Schmidt and let

{e} j>l t be a CONS in 0PT with dual basis ej>1 a CONS in €' . Then

using (3.10)

ce am

E( sup (Ce 2) CT ) ael <
jpl O~t T j~l T

Let 22 : : sup ( t(w)[ej])2 < w}, then P(I2) = I. Define

.t w t~ ) [ej ] j W e "2

j=1

t(w) =

Then from (3.10)

E( sup 1 2 E( sup (tLej]) 2) CT  Hej1 2  <

"4t-' t PT Oet<T j=1 j=l J m T

It remains to show that the series converges uniformly in [O,T] in the

.- norm and that (w) = t(w) a.s. in 0 4 t 4 T. Define

n
WSn(t') : ( tw)Le]J

S ( j=1 t el

then
U:-..

sup ISn,(tW) - Sn(t,W) 2  + 0 as n',n + ,
0 t T -PT

and S ( C COT] ). But since C([O,T],O ) is a complete metric
• -. n 'L VP PT

space there exists T t(w) e C([O,T],DPT) s.t.

sup TSn(t,,a) - t() IP T + 0 as n

and

B.%OA

"a.. . '' " '2' -, , - :,, • ". -.- "2 z"2,Z.. ".,.#: .v • ': Z- ,2 . . : ,,} . ,.. ., : . .. , . ., , .- , .# . , . .:.
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!ITt(,)12 lim OSn(t,w) 2  :lim I (t(w)[ej]) 2

"PT n - PT n+00 j=l

-PT

Hence

_( EnTt 2

T -PT

Next

E J I t t[)] - 2 ER - Sn(t) 2 PT

then

n
Et ] : lim ESn(t)[] 'urnm Eltej]ej[i]

. n - j-l

m lim Sn(t)c ] = [ej]ej[r] = a.s.n +- j I

Then we have shown that for each T > 0 P T s.t. the following set has pro-

bability one

-T {w: .-T(w) e C([O,T]; D' )1.:; PT

Then taking Tn t and 1 : /I 0 T we have that for w e -n=1 n

.-, 7(w) c C(R4 .s')

04

::1 ::<* :) , 4: : i~~ ' ","< ' .
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9

Step 4 Uniqueness.

Suppose that there exists a V'-valued process - (-) tnat is also a

*'- solution of (3.2). Then by Proposition 3.1 for each T > 0 there exists a set

"1 3 of probability one such that if w e -, T(w) e C([O,T];' T) for some nT > 0

M(LOG take PT > nT) and

4.. t
YtW)[l] y(W)[] + f s[AO]ds + Wt[] V o t €, 0 < t < T.

0

Fix w e Q2 Q3. Then, suppressing w in the following, from the above

expression we have that for 0 ; s < t 4 T and t e

S

W [TtsAp] C .- [TtsA,] _ n[TtsAO] _ f u[ATtsA ]du. (3.11)S t-s s o- -
0

* Substituting the last expression in the second term of RHS of (3.4) we obtain

t t
•-t : n[Tto] + f s[Tt. ds - j n[T sAO]ds

S".. 0 0

t s
"J f -u[ATtsA]duds + Wt[O]

00 t

and using Fubini's theorem

t t

't[ ] n nTt ] + S[Tt'sA.]ds f n[rt'sA ]ds
0

t t
f J" f CATt-sA ]dsdu + Wt(] 3.12)
0 u

Next, applying Lemma 3.1 to F = - we have

t. nTtAO]ds: n[Tt ] - n[l] (3.13)

Next since ATts: Tt5sAO V e ¢, applying Lemma 3.1 to F 4u e have

t t
f %uATt5 sACJds : f ;,j[Tt-sA2]ds u[Tt-u A ] -- -[,[a] (3.14)
u u

,,,-, ,--,-.-,-,. .- .. v.-. 4.. .- .-.- .- ..-.... -.- -- ..-. 'y . .; --. '. .'..-'. . 4 ..- " . .-" .. '-. . . >::'1" -
"w ". , • .. .. -.., ,. 4. .. . . . 4., .,4 . . ,.-,'. . . . ., .... , ,
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f.

Then using (3.14) and (3.13) in (3.12)

t t_
t[o] : r] + f -s[TtsA,]ds - f %[TtuA,]du

t t
+ f ru[Ao]du + Wt[] : ] + f u[A ]du + Wt[O] =-u[].

6

Thus for each T > 0

yw () = t(y)[ ] V, C D, 0 < t 4 T w e £ 2,'C Q3

Hence we have shown that for each T > 0 there exists a set Q T of probability

one given by

Q T :w: t t(w) w () 0 < t 4 T}.

*-' Let T ± and define T = • Then P(Q) 1 and if E Q
* nn=1 n

=t W) w V t >0

ft ." i .e.

* P(t = t t > 0) 1.

The proof of the Theorem is complete.
Q.E.o.

fRemarks.

3.1 In the case of a special compatible family (D,H,Tt) (Example 1.2),

for each j 1 is the one dimensional Ornstein-Uhlenbeck process

satisfying

d -xjqtdt + dWt1cj]

j,

t..t o n [ j]
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3.2 In applications one usually deals with an SDE of the form

dtt = (-Ltt + m)dt + dWt = LItdt + dZt

4here Z is a o'-valued Wiener process with parameters (m,Q), with m e

i.e.

EZt[,] tm[,].

In this case we have

22 V € 2

for some 9 > 0 and r2 > 0. Hence in the case of a special compatible family

dT : (-xT J T + 4-M)dt + dW j]

J n[Oj]
0

where m. m[ 0 1 T Tt .jI
't t

The following result can be shown in a similar way to Theorem 3.1

Theorem 3.2. Let M = (Mt)t)o be a right continuous o'-valued martingale

w.r.t. such that

SEt])2 < V t and V 0 .

Then the SDE (3.1) has a unique solution given by

t

',*t Ttn + Mt A'T 5 Msds a.s.

i.e.

. . ... . . ..
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t
.Jt] = n[Tto] + Mt[L] + Ms[Tt 5sAo]ds (3.15)

with the following property:

a) For each T > 0 there exists aT e with P(QT) 1 and

PT> 0 s.t.

T(w) : { w): 0 . t 4 T} e D([0,T], W E Q

EXAMPLE 3.1 (Poisson driven OU-SDE).

Consider a special compatible family (0,H,Tt) as in Example 1.2 where

H = L 2(x,dr) for some X and a a-finite measure r. In neurophysiological

applications (see [7]) X represents the surface membrane of a neuron, e.g. -

is taken as in Example 1.3 to be [O,b].

Define the 'valued martingale

t
Y =] : a (x)N(da dx ds) (3.16)

where

i) N(da dn ds) = N(da dn ds) - p(da dn)ds

and

ii) N is a poisson random measure, i.e. N([O,t] x A x B) 4s a Poisson

random variable with parameter t.%i(AxB) for A E B(R) and 8 is a measurable

subset of X.

The interpretation is that N([O,t] x A x 6) = the number of voltage puses

of size a e A R arriving at sites x c 3 at times s < t.

Then

60
" ,,,: ii . .1".1, •. . , ... .. ,..,,* *"'.. *,,• . , . , ', ,",- ,. ,.,,.*-" .- ---. ,..,",-, " -- ,,-"," ,- -..' " " ' %'"s "-, ",,",. ,-"
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t
E(Yt[¢]Ytjkp]) = j a a2 (x) (x)jj(da,dx)ds

0 Rx X

:: = t Q( ,w)

where

fQ(.,) = f a2 ( (x))2(da dx) (3.17)
,# Rx X

In [7] the semigroup (Tt) represents the evolution semigroup describing

the decay of the difference Et between the actual voltage potential at the

time t > 0 and the resting potential on X , and this difference is modeled as

tne o'-valued solution of the SDE

d t = -L' tdt + dYt, Elnpir < - some ro > 0 (3.18)

0

wnere A = -L is the generator of Tt.

In this situation it can be shown that there exists p > 0 s.t. for each

T > 0

.I"E eI -cU(CO,T];Op) a.s.

°" j . '
(see [7]) and that Jo. converges uniformly in [O,T] to E in the

topology where

e- -tt X -(t-s)
Se o[CJ] + t e dY sE] (3.19)

and Xj, , satisfy (as in Example 1.2) Lqj = j j 1.

,~....~% N........-....... --.. -.....



LECTURE IV

WEAK CONVERGENCE OF SOLUTIONS,

At the end of the last lecture (Example 3.1) it was shown how the membrane

voltage potential at time t t of a neuron can be modeled as a o'-valued

stochastic differential equation driven by a stochastic process with stationary

independent increments defined through a Poisson random measure. However, it is

believed that the pulse sizes are quite small, making it reasonable to hope that

they can be modeled by a Gaussian noise process. Let us now consider the weak

convergence of the solutions of (3.14) to the corresponding SDE driven by a

Gaussian noise. Most of the material in this lecture is taken from [2] and [7].

Sufficient conditions for the weak convergence of o'-valued stochastic processes

are given in [11].

Let (t,H,Tt) be a compatible family and A e ('). For each n 1

let Pn be a measure on (R x A, (R) x8(A) such that the positive definite

bilinear form

Qn a2 n[O]n[ ,]in(dadn) (4.1)

RxA

is continuous on t x 1, and let Nn  be a Poisson random measure with intensity

measure wn(da,dn)dt. Define

4- ~ nIN (da dn ds) An(da dn ds) - n (da dn)ds (4.2)

and

tyn[¢] f f an[]Nn(da dn ds) . (4.3)

0 RxA

Y. Jefined in Example 3.1 is a special case of the above for a large class of

spaces A

-a

04"/'.%"
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For n ) 1 let mn e 0' and consider the -valued process n given by

d = A' tdt + mndt + dYt

(4.4)
, n n n

where nn is a -measurable.

The following result is proved in [7].

Theorem 4.1 Assume the following six conditions hold:

1) There exists r2 > 0 and c > 0 such that for n > 1

(mniC]2) +Q(,) 4 c1 02 V * .
r2

2) lim Qn( , ) = Q(@,@) V @ for some positive definite bilinear con-

tinuous form Q on o x o.

3) r mn[@] = mCf] V 6 for some n e o'.
n -

4) There exists r3 > 0 such that

sup max(Einn, 2 , Elini r} < -.

n -r0  0

5) Fo converges in law to q on ' for some T)r3  r

6) lir ran[ ]I3 un(da dn) = 0 V 0 .n+- RxA

' Then for each T > 0 there exists PT > 0 such that n,T converge weakly to
T on D([O,T],0p) where { is the unique solution of,*,

-..

A

_0 ', ,
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d t = A'dt + imt + dWt (45)

and W is a centered -valued Wiener process with covariance functional Q.

Furthermore

T c C([O,T]; 1) (4.6)

We conclude this lecture by discussing several important examples occurring

in applications. They are discussed in [7], [15] and [16].

*. EXAMPLE 4.1 (White noise current injection at a single point xo).

Let H = L2([O,b],dx),Tt,-L and 0 be as in Example 3.1, i.e.= .. , , • , •

k" = [O,b],b = n, H = L2(x,r=Leb),LO = -a4 + BA ,

'jx) = cj(cos(jx),c o = 1/Tr,c1 = /V2/ and Xj = a + S(j)

Assume that the impulses can arrive only at a single point x0  [O,b]

with arrival rate measures U1 of the form

jn(A B) = u(A) * 1(xo) A e 3(R+), 8 EB((O,b]) (4.7)

wflere

n P k n k q 2. 1()

Ii(A) I f e a( ' + A a f fi iA(-a ) (4.8)
k=1 t= 11

and a k,n (0,-) are the possible sizes of "excitatory" pulse (positive) and, e

- -a. n are the sizes of "inhibitory" pulses (negative), and fk,n fk,n arei e , l

* intensities of Poisson processes.

Write:

S:: kn (ak'n) 2 + ) ft'n(ak'n) 2  (4.9)
fk n

k=1 e e Z=1 I



-. - ---. - -

p q%?.. k.n P ~ q f,na X,n
Y fknak'n f" a (4.10)k=1 e e

and

Xt[] Yn,(x o ) + yn[] 0 e (4.11)
t t

" .". where

" Yn@] :k ak'n f f 0(x) N k'n(dx,ds)
t k e 0) e

1,n tIn
-o: .~. a ,n t

a i f f (x) N(dx,ds (4.12)

-U.

and -k,n N,n are independent Poisson random measures with variance measures
e '

gi ven. by fk n v(dx) , fZ v(dx) with v(B) 1 B(xo)-

Hence from (4.1) we have that

,2

-n (,,,) = O(x )p(xo) 2  (4.13)

It is worth to observe that (j(x)}j1 I does not diagonalize 0n.

For each n 1 1 consider the SDE

d n =-L' &nt + dXn
tt t

Sn n (4.14)
- "n

An application of Theorem 4.1 gives the following weak convergence of solutions

of (4.14).

Proposition 4.1. Assume the following four conditions hold:

1) lim max (ak,n ,a,n} = 0.
n 1
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2) lir o2 = G2 for some 0 < a2 < 0.

3) 1im yn = y for some y < 0

n +o

4) no converges in law to no, where n is a tr -valued gaussian random
0

variable for some ro > 0

Then lir Qn(@,m) : Q(@,p) : gXo)p(Xo)a 2  and n converges weakly to

where is the unique solution of the SDE

d = -L'&tdt + dWt (4.15)

0 no

where W is a centered €'-valued Wiener process with covariance Q. Moreover

using Example 1.3 and Theorem 3.1(c) we have that W. e C(R+; p) for p > 1/4

and e c C(R+; 4) where q > max(l/4,r 0 )

Furthermore j := Lj] satisfies the real valued Ornstein-Uhlenbeck SOE

d =J [- X . + -Y~j(x ]mdt +. a Oj.(xo dWit .P't 0o . o
(4.16)

" o° = oL~j]

where the one dimensional standard Wiener processeses W t = Wt[€ j ] j I are not

independent.

EXAMPLE 4.2 (White noise current uniformly distributed over X().

Consider the previous example but now assuming that white noise injection

can occur at any point in rO,b] with arrival rate measure

n x n vn A

WA(A 6) wn(A) n( ) A s 3(R) 8 e (CO, ])

* B
4 _ .w. . ."w J ."""e . . . " """"""""",... Z . ' . .' .' ' .. ".". . - . r...-.-,.w-' ' iV .T ,.
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where is defined in (4.8) and n is a sequence of probability measures on

[O,b] such that vn converge weakly to v where v is 1/b Lebesque

measure. Then for each n > I

b
Qn(O,) = a2 f O(x) (x)Vn(dx) , D (4.18)

0

In this case the corresponding weak convergence result is given by the following

proposition.

Proposition 4.2. Assume that the conditions (l)-(4) of Proposition 4.1 are

satisfied. Then

jwi -L"2 b
a) lir Qn( , ) = Q( ,) :: f (x)(x)dx.

O n+- 0~ (~~(~x
n b 0

,r.

b) n converge weakly to .
n

where t is the unique solution of (4.15) satisfying the same conditions as in

Proposition 4.1 with the difference that W is a V'-valued Wiener process with

covariance functional Q given by (a).

The Wiener process W can, in this instance, be defined in terms of the

centered 2-parameter Wiener process Wt,, (0 4 t 4 T, 0 4 x < b) with

covariance

E(W W min(t,s)min(x,y), (4.19)

Wt[] :: ,(x)dxWt, x -

Fjrtner properties of the solution Pt in this dse have been investigated in

detail !y J. Walsh [15].
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Theorem 3.1(c) and Corollary 2.3 are examples of results for which in the

case of a special compatible family one can obtain additional information on the

spaces where some V'-valued processes lie. This information is given in terms

of r, (which satisfies condition (1.3) in Example 1.2) and of r2 given in

Corollary 2.3 and related to the covariance functional Q. The following Lemma

is useful in determining r2 when Q is of the form presented in the previous

examples.

Lemma 4.1 Let (0,H,Tt) be a special compatible family. Suppose there exists

r > 0 such that

c : sup sup -(x)(1 + x)- r < V~x

f.dand

c '  c2  := f a 2 j(da,dx) <.-

Rx A

Then

a f a *(x)p(x)w(da,dx) (4.20)
Rx X

satisfies

Q , 2+r (4.21)

wnere (Xj)j1 and r1  are given in Example 1.2.

The proof of the Lemma is given in [7].

%"

r' ,.--.. -.- - o ., - .- - - .- - , * ,-*- - - - • • ... .. *-.- ,. - .- * *., . .. .
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* EXAMPLE 4.3

Let S 2, the unit sphere in R 3, with Lebesgue surface measure r. Let

AB  be the Laplace-Beltrami operator

= = (sin 6)'[ j1 - (sin 9) - + (sin 6)-1  j. ] (4.22)

(where 9, ri are the Euler angles on S2) . Let L = -8 + for BS > 0

and H L2(3(,r). This time the eigenfunctions are the spherical harmonics

Y m( =O,1,...;m : - ,...,t) with eigenvalues X = B + Sx(z + 1) for L, e-tX

for Tt .

Write

SYXm, j m + I(I + 1) (4.23)

(i.e. X : [I'], M : j - - 1)

a : + 6[vj]([j] + 1) . (4.24)

Then
C -(2+r1  2r1

if+ X 2r (2Z. + 1)[1 + a + 6(1.2 + .)] < a

.if rI > 1/2. Hence condition (1.3) in Example 1.2 is satisfied and a special

compatible family (0,H,Tt) can be constructed. Furthermore

sup Ym(X)I2 = I + I )

and therefore

sup sup 1(x)l (I + X) -/4  C4, min(6,48)] -1/4 < -

3% %

4.,

.- j..

.1.. A

@"4 . . -.-." "." . :,":'', ,. -' ' ' -' ' ' , ,, : . -. .' . ' .. ..-'"; '- .
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Hence c 1  in Lemma 4.1 is finite for r = 1/4 . Then by Lermma 4.1 for any measure

P on R x 3 sjcl that

f a2w(da,dx) < (4.25)
Rx*

we have that if Q is given by (4.26)

r+r,

where r+ r~ > 3/4, i.e. r 2 =r + rl. Then if q is as in Corollary 2.3

1 3 5

A more general result is the following:

4 Poposition 4.3 Let X be a smooth d-dimensional compact Riemannian manifold

* ~ itl smooth (possible empty) boundary a X and Riemannian volume element dr.

* Let L be a positive, self-ddjoint operator on a domain,& S~ H = L2(X,dr) such

* that

*a) C'0(X) .5(if 3 x is not empty, XJaX is compact and
0

C'*( ) C* functions on X whose support lies in X . If 3aX is empty,
0

is compact and C a()C) = '(E
0

b) L 0 := LIC0 is a uniformly strongly elliptic differential operator of

0

order 2m >0 witl smooth coefficients.

c) .6 ; W2m(x), the Hilbert space of those elements in H with 2m weak

derivatives in H.

Then L admits a CONS {j. of eigenfunctions in H with eigenvalues

{X 1 satisfying

IV
... .*
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.5...

i) L. = j
" , i i 1) *j E ' )

2r
i) (1+ < for r ),d

iv) sup sup t~(x) 1 + j)- < - all r > d
ix V

Hence by condition (iii) above and (1.3) we have that a special compatible

- family can be constructed in the manner of Example (1.2). Moreover from (iii)

above if p is any measure on Rx% satisfying (4.25), by Lemma 4.1 r2 > d/2m.

Then if q is as in Corollary 2.3 q > r + r i.e. q > 3d/4m.

Additional examples and applications of V'-valued processes can be seen in

[7] and references therein.

.

5,.'

A?

9.
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LECTURE V

STOCHASTIC EVOLUTION EQUATIONS AND

NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

In this lecture we will give an outline of recent works on stochastic evo-

lution equations and nonlinear stochstic differential equations on the dual of a

Countably Hilbert nuclear space.

Throughout this lecture (Q, ,P) will denote a complete probability space

with a right continuous filtration ('.1 and (, -Ii r > 0) will be a
.r.t>,

Countably Hilbert nuclear space.

nO  1. STOCHASTIC EVOLUTION EQUATIONS

The material of this section is recent joint work with V. Perez-Abreu.

There are several possible extensions of the SDE (3.1). For example one

nay consider an evolution operator At instead of the infinitesimal generator

-L and/or a perturbation operator Pt' In this section we consider the SDE

d = : (A + P ) dt + dWt

&0 = Y

where y is a -measurable 4'-valued gaussian random variable s.t.
0

Ei-- < - some r o > 0 and W t is a V'-valued Wiener process witl, ..- r 0

covariance Q. By Theorem 2.1. W. e C(R ,') a.s. for some q > 0. The opera-

* tors A and P from to D are assumed to satisfy the following con-

Jtions:

Assumpotions on At:

a) For eacn t J A t is a continuous linear operator.

O4

. . .. , - . -... . .'... . - ......- . ... .. .-.. ... • ..- -.. -. . -. .-.-.- .-. -,< , .. .-.
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b) For each 0 the map t + At is continuous.

c) At is the generator of a two parameter semigroup T(s,t)

~0 < s 4 t < - (T s,t) = T(s,t')T(t',t) s < t' < t, T(t,t) : I), i.e.

d T(s,t) T(s,t)At VO 0 0 4 s 4 t

and

d T(s,t)o = -AsT(s,t)o V 0 0 < s 4 t

" d) For s < t T(s,t): o + D is a continuous linear operator,

e) lim T(s,t)o = T(s,to)o in the D-topology for each s fixed and
t to

o0 < s to, e (D, and lim T(s,t)o : T(sot)o for each t
St

fixed and 0 < t, D,

d) for each T > 0 and n 0

sup OT(s,t)ONn < V *
0<s<t4T

Assumptions on Pt :

e) For each t > 0 Pt: I + o is a continuous linear operator

f) There exists a sequence of seminorms (I - in; n > 0) on 0

generating an equivalent topology as that given by the Hilbertian norms

(0- {-n; n ) 0} such that the following holds:

. i) for each T > 0 there exists mT > 0 s.t. for m > mT  Pt

has a continuous linear extension to , (III I rn-completion

of 0) and the map s + Pso is olmi-continuous,

-ZR4
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ii) for each T > 0 there exists mT > 0 s.t. for m mT

K(m,T) > 0 and

sup 1i PsT(S,t) l m 4 K(m,T) ai 1'm V
04s ct4T

Observe that condition f (ii) above can be obtained using f (i) if we assume that

for each T > 0 and m > 0

sup ii T(s,t) m Mi D(m,T)ii ol m V *

for some D(m,T) > 0.

Definition 5.1 We say that the SDE (1) has a '-valued solution 0.4

if the following four conditions hold:

i) ( is S t-adapted and o'-valued.

t t
ii) [] = y[€] + f s[PAs$]ds + f s[Ps5 ]ds + Wt[] V

0 0
a.s. Vt )0.

Siii) e C(R+; ') a.s.

iv) For each T > 0

E( sup I~t[€]2) <

Proposition 5.1 If ( t) t) is a solution of the SDE (1) then for each T > 0

there exist qT > 0 and a version of (denoted also by ) such that

.T C([O,T]; ' ) a.s.

and

-'F

"1 '

0.f3
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t t
[O] : Y0] + f SLA s Olds + J s[Ps Olds + W t[]

0 0

0 , ) 4 t . T a.s. (5.1)

The proof of tnis proposition is done in a manner very similar to Proposition

3.1.

Remark 1. Cndition (iv) in Defintion 5.1 is implied by the following con-

dition: For each T > 0

T T
E (rs[As ])2ds + E f ( s[Ps < 2E .

0 0

Theorem 5.1 Let y and W = (Wt)t,0  be as in the beginning of this lecture

and suppose that A and Pt satisfy the assumptions (a)-(d) and (e)-(f)t
respectively. Then the SDE (1) has a unique solution = () such that

for each T > 0 there exists PT > 0 and

.TE T (OT]¢ )a.s.

' PT

and

E( sup 12T) < ""
0tea T - T

Moreover tis a t'-valued gaussian process.

Proof. The idea is first to show that the unperturbed SDE

drit = At ntdt + dWt

no = y

has a unique solution. This is done a manner entirely similar to the argument

in Theorem 3.1 using Lemma 5.1 below instead of Lemma 3.1, and using only the

OI

' - ' .-' - " " ' ,° -' "o ". ' . "- - ' " '° . '. " .' . " ° .. " -- . . . . ." w " " R • ° . ° • q
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assumptions on At. The solution is given by

t

n[] = y[T(O,t)o] + f Ws[AsT(st) ]ds + Wt[ ] " (5.2)

The next step is to show, by the method of successive approximations, that

the stochsatic equation

t
t= f T'(s,t) P sds + nt  (5.3)

0

has a unique solution on C(R+;&'):. The process nt  given by (5.2) has the

property that for each T > 0 there is a qT. > 0 s.t. E(CT) 2 < - where

CT(w) := sup unt(,)!q (5.4)

Next, using assamption (f) there exist constants ci : ci(T,qT) i 1,2 mT > 0

and n T > 0 s.t.

00 (N7 T c 1  On M c2  T V * C . (5.5)

From (f) (ii) it then follows that

sup 3PsT(s,t)IImT < KT 00ImT V C . (5.6)
O<t<T

Let

then P( 1) = 1. For w e Q, and 0 < t < T define the sequence of successive

approximations

0
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0

t
& (w) =JT' (s,t)P' &( w)ds + nt(w)

t
& (w f T' (s,t)p'. n 1 ( )ds + n()

t 0 Ss

Then for each n >0 and e

r =o ~

't

F f1 ns[P5T(s,t) ]ds + nt[ J
0

t
n f e-'[P T(s,t) Jds + t]

0 t

t Si 5n-2
j fj ... J ni [P s T(s n1'n2"
0 0 0 n-1 5 n1 -sn).

t S I n-
+1 f *f..f n5 [n2 P S T(sn-1S-3..
0 0 0 n2 n2 n2n3

ps1T(slt)o]dsn *dsi

+. + fltN:]

Hence, using (5.5) and (5.6) one shows that the above integrals are well defined

and moreover

-,r -.- *,.\.'-"*~
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",.

"n 
n (KTT)k"""n )*] CT(w)Clc2( K= !0 n T 57

and

,n (K TT) n

C n 3 (W)I] CT(w)CIC 2 ( 1 -77- ) I V . (5.8)
k=m+1

Then for each W E Q I , 0 4 t < T and 0 e t w() is a V-valued element for

n I, J()[f lim n(w)[ ] exists and

K KTT
sup lt()fl] I < CT( W)clfe e 1 (5.9)

04t 4T TnT
4

Hence t(W) E '. Moreover let xT > n T be such that the injection map

IT - C., 0qT is Hilbert-Schmidt and let ( j}jl ) ¢ be a CONS for with

dual basis {@ }j, a CONS for 0', Then from (5.9) we have

a* t ( ) E 1 C 2 2 2 K t T - 2L, sup II 1()Ej < f CCe t 1JUn <T 12K L
4Ot4T j=1 j=1

and therefore for 0 < t 4 T and w e si

J=1

is a well defined element of 0 T and i()[] = y()[*] V0 e D. From now

on we will write t instead of it.

Next we shall show that &t is a solution of (5.3): From (5.7) and

assumption f(ii) we have (suppressing w £ in the writing)

2 4..9, 
e,
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I~n'C~s(S~)€]l< l 'l. T IP T(s,t) I

s s T KriI TC TClC2e TK K T fl mT < W

V *eD, n > 1, 0 < s 4 t 4 T.

Then since

-t.'.' .. ~ ~ ~ )[] " '()sT(S,t)0]d s + nt(,,)[ ] ,  w e S11,
0 0

by the dominated convergence theorem

t
t[p] =lira t[o] = lir f e'I[PsT(s,t)o]ds + nt10]n - t n *= 0 st

t
J Es[PsTst)0]ds + nt[0] V * e 0 0 < t < T. a.s. (5.11)
0

which shows that satisfies condition (ii) in Definition 5.1.

Next we shall show that T c C([O,T];O' ) a.s. for some pT > 0. Let

tot e rO,T]. Then using Lemma 5.1 below it is not difficult to show that for w E1

t to
J, r (w)[PuT(u,t)0]du - I &(w)[PuT(u,to)0]du 4 CT(w)DTAOI t-t

0 lu0 T

for some 0T " 0 and rT > 0. Hence the process

- t
ZtJ 0] := &uCPuT(u,t)0]du

is a continuous process in t c [O,T] for each * e €. Hence from (5.11) we

have that rt[o] is also a continuous function of t. Moreover,

: " i sup I (W)[*]I (CT(w)D T + CT()}rT YO e W e S1 (5.12)

0t4T T

Next let PT > rT be such that the injection map tpT-v rT is HiVaert Schmidt

and let {ej } 0 be a CONS for o with dual basis {ej ~ a CONS for' jo P ,,>
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' Then from (5.12)

sup . I%[ej ]I 2 4 (-TOT + CT) 2  Aej <
0t4T j=T j=T

bCa

Hence for u e 1I define (w) = (w)[e.]. which is an element in ' Then

- (W)[] = t (W)[] V e $D 0 4 t 4 T, w e Q

From now on we write t instead of &t. Then by the dominated convergence

theorem, since t(w)[ej] is continuous on t for each j 1 1 we have

nlim &t 2  rm to[e) 2
.. li ( [e~j]-]t . o 0PT t0t 0 i

) lrn (Jej] - Ct[ej]) 2 = 0 to [O,T]

j=1 t-).t0

Then eT~u) C([L,T]; ' ) for some PT > 0 and w e sil where P(s21 ) 1.
PT

Also from (5.4) and (5.12) we have that fer each T > 0

E( sup It[]1 2 ) < t c .
04t<T

which shows condition (iv) in Definition 5.1. Moreover from (5.12) and since

2• -. z~T) <

E( sup 1 n2  ) < E(CTDT + Cr) ) e < .
Ogt4T "PT j=

A simlar argument to that at end of Step 3 in Theorem 3.1 gives condition (ii)

in Definition 5.1, i.e.

e C(R+;O') aAs•

Hence, , is a solution of (5.3).

To show uniqueness let X be any solution of (5.3). For the present assume

" that X sastisfies the following condition:
;.
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() For each T > 0 there exists p >0s.t. XT e C([0,TJ; c'' a.s.

W.L.0.G. let p{ > PTand

(W: sup IEXtwi < .

Then P 1. Fi n a and let 0 < t 4T. Then for each 0c

(suppressing w in the writing)

t
xtcjr~ f X[ P T(s,t)o]ds + to

0

nNext, if t is the sequence of successive approximations defined prior to

(5.7) we have

0Xt[,] - yJ ] = f XSEP ST(s,t) ]ds (5.13)
0

\J. x - F Cl= f-JS~st d f LP T(s~t d
0. 0 S-

tEo] _ n (X5CP5Ts,t )0] -lc 1 PT(s,t)o])ds

Hence

Et, - TPT~ sP T(st)]ds..s

Sn sn 19n1s

(5.13) t Si s n
f ff . f X s EP T(s n 1 9sn)..
0 0 0 n+1 n+1

P5s T(s ~~~snl*ds1
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Then using inequalities similar to (5.5) and (5.6) it follows that
. 'i-

n n (KTT)n- xt[*] - up CCt
-.c.o" 04t4T -PTc2 --nT- m

for some positive constants Cl,C 2,KT and m. Hence

sup IXt[t] - n[,], - 0 as n

0 rt 4T

Thus P(Xt : 0 4 t 4 T) = I and a similar argument to that at the end oft t

Step 4 in Theorem 3.1 gives that P(Xt = t 0 > ) = I.

The next step is to show that the solution . of (5.3) obtained above is

also a solution of (I). In order to do that we need the following Lemma.

* -* Lemma 5.1 Suppose conditions (a)-(d) on At hold and let B be any continuous

linear operator from 0 to o. Then for each F e 0' and 0 4 u 4 t

*d..' t
- a) F[BT(u,t)o] = F[BO] + f F[BT(u,s)A s]ds V C

U

/~ t
b) FCBT(u,t) ] = F[B] + f FrBAsT(S,t)@]ds V * e 4.

The proof of the Lemma is similar to that of Lemma 3.1 using the Kolmogorov

Forward and Backward equations:

d

.''.i T(u,s)¢ = T(u,s)As¢ 0 < u < s, £ s

5,.- - d

-d T(u,s): -AuT(u,s)o 0 4 u 4 s, , 4.-'.'-"du

End of the Proof of Theorem 5.1

We shall show that & is also a solution of (I) and that it is unique.

Let , tnen from (5.11) (suppressing w in the writing) we have

I W %A I.-

elz
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'a t
=Jo f E5CP5T(s,t)O]ds + ntj* 1  V 0 e 0 0 < t < T . (5.14)

a' 0

Next, applying Lermma 5.1(a) with B = P and F = Fuwe have

t
Eu[PuT(u,t)Oj = E[u + f & u[PT(u,s)A5.]ds

and therefore

t t t t
f E(w)[PuT(u,t)O]du j J ~w[Pu]du + f f u(w)[PuT(u ,s)A5 O]dsdu

t t s
f I %(w)CPu.]du + f f %~(w)CPuT(u ,s)A5 O]duds. (.5.15)
0 U0

But from (5.14) since

S

[A0 f %CPuT(u,s)A 5.]du + n[sl
0

using the above expression in the second term of (5.15) we obtain

4t t t tf C EP T(u,t)o]du = f u[Puo]du + f ECA54]ds - J ri5[A5o]ds. (5.16)
0 .,. 0 0 0 0

But also from (5.14) we obtain

4 t
%[.~PT(u,t)O]du = &tflI - j.

Hence from the above expression and (5.16),

to - flol fSP d + SAS]ds f n5E[A sO]ds
0 0

i .e.

a't t t

&tJ & s C5 P S Ods + Js C5 A5.]ds + no - n riAso]ds
00

t
but since -tf f r%[ASO]ds y + J

0

'a%

V. -* k3 *~../~~- .
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t t

. f s[Pso]ds + & s[AOlds + y[o] + Wtstl V 0 0,
0

"i.e. dt = Atdt + Pt~tdt + dWt.

Finally we shall show the uniqueness of the solution (1) proving that any

other solution t of (1) satisfies the SDE (5.3). Let Q3 be the set of pro-

bability one given by Proposition 5.1 s.t.

&T e C([O,T];' ) a.s.
qT

and
A.;

t _t_

-- ] Y] + "f sCAs]ds + f s[Psf]ds + Wt[o]
0 0

V ( D € 0 4 t 4 T a.s. (5.17)

WLCG we can take qT > PT. Let w S3 S 11" Then (suppressing w in the

following) from (5.17) we have that for 0 4 s 4 T

t
WsEAsT(s,t)o ] = -S[AsT(s,t)o] - JPuAsT(st) ]du -

, . t

- _uAuAsT(S,t)f]du - Y[AsT(s,t)o]. (5.18)

On the other hand from (5.3) and (5.2) if 0 < t 4 T

t t

t]- SrPsT(s,t)f]ds f WsCAsT(s,t)0]ds + yCT(0,t)0] + Wt[l]. (5.19)
0 0

Hence using (5.18) in (5.19) we have

M 4.--
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t t_
tl ] - P f 5 T(S,t)07ds =f 5[A T(s,t> ]ds

0 sS0 S

t S t s_
f f I uCPUAS T(s ,t )o]duds - Jf .J[AUA T(s ,t)o]duds
0 0 0

t
- fA ST(s,t)O]ds +- y[T(0,t)o] + Wt[.1 (5.20)
0

Next, using Lemma 5.1(b) with F = y, B = I we have

t
- f yCA 5T(s,t)ojds + y[T(0,t)O] = y[*]. (5.21)
0

Again, applying Lemma 5.1(b) with F = c, B =Pu and with F = and

3 A uwe have the following two expressions

t
-f jPuAST(s,t)O]ds = E P 0] - CP [~~)I(.2

0 ~~u u u PuT~~ ](.2

t

-J [.AuAsT(s,t)o]ds =~ [UAu 0] - F& [AuT(u,t)o]. (5.23)

Hence, using (5.21), (5.22) and (5.?3) in (5.20) we have

t t -t_
&to - j rSPr(st)O1ds f F rAST(st)Ods + f U *J du

0 0 0

t _t __t _

-f -&u[PuT(u,t)o]du + UjAuo]du - uC.AuT(u,t)O]du

0

+ Yflo] + t

that is,

-to &S[PST(s,t) Jds = %[Puodu +. -JAL]du

t _

+ Y[O] +. wt[] f J EPJ(j,t) oJdu.
0p 0u

9. .* .9J
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*. Then using (5.17)

_t t
ijt] - s[PsT(s,t) ]ds = t[] - s[PsT(st) ]ds =nt] ,

0 0L

, i.e. satisfies (5.3). The uniqueness now follows from the uniqueness of

the solution of the SDE (5.3) using Proposition 5.1, which gives condition (*).

Finally the Gaussian property of the solution 5 follows from the fact

that for each D E [] is the a.s. limit of a sequence (the successive

approximations) of gaussian random variables. Q.E.D.

p- Special case. Let A = -L be the infinitesimal generator of a one parameter

*semigroup as in Lecture 3 and consider the SDE

-;d -L ' tdt + P tdt + dWt

i~
o

The unperturbed equation is a model used in neurophysiological applications

(Example 3.1 and Lecture 4). However it is important to observe that in this

-field the kind of perturbation that occur are more likely to be nonlinear rather

tnan linear.

Example 5.1. This example occurs in fluctuation theorems for interacting par-

*. . ticle diffusions and has been considered by McKean [9], Hitsuda and Mitoma [4]

and Mitoma [12].

For n > I let

'F Y(n)(t) = (y1n)(t),...,yn)(t))

4. De an n-particle diffusion given by tne SDE

6,

- ". -. '. "'- . ... .. " '-, "'.."i/ -'. ,'' ""'''- ' .,, -.. = -- ''."' " : -"" 'F %- .
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"4n t
Y(t) Yk + f a(Y (s),Y k(S)

Sn

+ Li b(Y(n(s),y(n)(5))ds (k
j=1 0

where (yk,Bk)k)l are independent copies of (y,B) and y is a random

variable independent of the real valued Brownian motion Bt. The coefficients

a(x,y) and b(x,y) are bounded C -functions in (x,y).

For each t > 0 consider

n
U(n)()= n

n j=1 Y(n)(t)

where 6 is the unit mass at x. U(n)(t) is a measure valued process.

McKean [9] has shown that

U~) a.s.u(n)(t) + u(dx,t)

where u(dx,t) is the probability distribution of X(t) that satisfies

dX(t) = c(X(t),t)dBt + B(X(t),t)dt

where

4' a(x,t) := f a(x,y)u(dy,t)
R

S(x,t) : f f b(x,y)u(dy,t).
R

Moreover, McKean [9] has also shown that u(dy,t) has a density u(x,t) and

_. %iat (x,t), 8(x,t) and u(x,t) are CO-functions in R x R+.

Let

Sn(t) = /n [U(n)(t) -u( ,t)].



Hitsuda and Mitoma [4] have shown that the measure valued processes Sn( ') con-mn
verge weakly to the solution = (&t) of the stochastic evolution equation

d~t A tdt + P dt + dWt (5.24)

where for (D

(Atp)(x) = 1 (x,t)2 (2)(x) + B(x,t) (1 (x) (5.25)

(Pt,)(x) = I b(y,x) (1)(y)u(y,t)dy
R

+ j a(Y,t)a(x,Y) (2)(y)u(y,t)dy (5.26)

R

. and Wt is a zero mean &'-valued gaussian process with independent increments,

wo =0. As pointed out in Mitoma [12], the nuclear space appropriate to the

problem is given by the space 1 of real valued functions @ such that E t

iff ,(x) (x)E e where

-~ ~~x) fe-lzlp(x -z)dz

R

and p is the usual mollifier

c. exp(i/(1 - Ix12)) lXI < 1

0 xi > 1.

Notice that I is a modification of with the following relations among the

norms defining their corresponding topologies:

MokanD = ,l,01n (5.27)

nn,=



. .. ,. . , . , . ... = ; _ . . . . . . . . . . . . .

~-32-

were

I fill sup sup ID kf(x)l n > 1 (5.29)° :Z''.n,' 0 j k ,n x rR

n
1 f f (I + x 2 )2nlDkf(x)12 dx n > 1. (5.30)

n' k=O R

It can be shown (see [12]) tnat under the above conditions the SDE (5.24) satis-

fies the assumptions of Theorem 5.1 and therefore Sn(.) converge weakly to

the unique solution of the stochastic evolution equation (5.24).

The example just discussed is an instance where the two parameter evolution

semigroup T(s,t), its generator At ad the perturbator Pt can all be defined

directly on a countably Hilbertian nuclear space 0 so as to satisfy the

assumptions stated at the beginning of this lecture. It is worth noting that,

in many cases, these operators may be more naturally defined on a Hilbert or

Banach space, as e.g., in the work of Kato and Tanabe [8, 14]. In such cases

the problem of finding a 0 for which the assumptions concerning At and P

are valid, has to be solved first before the results of this lecture can be

applied.

- 2. 0'-VALUED DIFFUSION STOCHASTIC DIFFERENTIAL EQUATIONS

A more general o'-valued SDE is given by

d =t A(t,&t)dt + B(t,Et)dWt~(5.31)

~where the coefficient functions A, B are of the following type

a) A: R + x (P t €

.. W
. .. _...%

. .. , " # " . " , , ,
°

. . " " . " w ; " ., - . • " • " , "'"' - I
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b) B : R11 X' to+L (Do~'

where £,(',&) denotes the class of all linear continuous operators from i'

to 0', y is a t'-valued random variable and Wt  is a V'-valued Wiener process

with covariance Q. In this case it is necessary to define a stochastic

integral of the type
t
J fs(w)dWs(w)
0

where ft(W) E

The following are conditions under which a unique solution to (5.31) exits:

For each T > 0 and sufficiently large m , 0, there exist numbers r > 2,

e > 0 and p > m such that A, B, the initial measure u0  for r and the

covariance functional Q satisfy the following properties

(IC) - Initial Condition

f quljr m Po(dU) <

(CC) Coercivity: Let jm be the canonical isomorphism between tm and tm

For each t < T and u e I

2A 2
,.t(Jmu)[u] + (r- 1)iQ m,-m o ( B(l + lJ (U) m)

is the trace norm of the nuclear operator determined by the bilinear-in, -m

form Q where
B (u)

Q (0,*) = Q(B*(u)O,B*(u) ) , ID

Bt(u) -

and, B*(,j) c .( , t) is the adjoint operator defined by the relation.
t

Ytu) f[ ] =fCg*(u) ] for all f e 0' and all e

Vt
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(LG) Linear Growth for each t 4 T and u c

At(u) C

and

11At(u)l 2 0 (1 +Au2M

IQ 1 2 41 2/ rl + OuO2

B*(U) -M,-M T2 6 -+
t

(MC) Monotonicity. For ecah t 4 T and u,v e

Am

p

and

*2(u 
- v,At(u) - At(v)) _ + (r - 1)Q B ( ) B ( P -

4 elu - '/12

P-

(JC) Joint Continuity

A: [OT] x DI+V

and

B: [O,T] x o' + o' (')

are each jointly continuous.

The proof of the existence of the solution will appear in a forthcoming

paper by G. Kallianpur and R. Wolpert.

if 'A N11.1. * I
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